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ABSTRACT 

Defining stocks for bottlenose dolphins in the Gulf of Mexico is complicated by the apparently 

continuous distribution of dolphins in these waters.  While genetic studies promise rapid 

answers, most analytical methods are hindered by the need to begin with hypothesized strata.  

Long-term studies in the vicinity of Sarasota Bay, Florida allow hypothesized population 

structure to be based on extensive habitat and behavioral data, but such data are not available for 

most of the Gulf.  We present a new analytical method, called Boundary Rank (BR), for 

generating population structure hypotheses in bottlenose dolphins and other continuously 

distributed species.  We applied BR to an existing genetic dataset for bottlenose dolphins from 

Sarasota Bay and surrounding waters as an empirical test of the performance of this approach.  

We performed two analyses, one of which incorporated data from the long-term observational 

studies, the other of which did not.  The results of both analyses were consistent with the results 

of long-term observational and photo-identification studies of population structure in the study 

area, suggesting that this method can be successfully applied in areas of the Gulf for which long-

term observational data are not available.  BR outperformed another available clustering method 

called SAMOVA.  Estimated dispersal rates between the four major water bodies suggest that 

these areas represent demographically independent populations that warrant separate 

management under the MMPA, supporting previous behavioral and genetic analyses.   

INTRODUCTION  

The Gulf of Mexico is home to a number of photographic identification studies of 

bottlenose dolphins, including the longest-term study of wild bottlenose dolphin movements in 
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the world (Scott et al. 1990, Wells 1991, 2003, Wells and Scott 1999, 2002, Reynolds et al. 

2000).  Along the central west coast of Florida, findings of long term residency of dolphins 

within bays and sounds, coupled with repeated patterns of social associations, led to the 

description of geographically-based, multi-generational “communities” of dolphins, each 

community inhabiting home ranges with borders slightly over-lapping those of the adjacent 

communities (Wells 1986, 1994; Urian 2002).  However, the understanding of population 

structure throughout the rest of the Gulf remains problematic.  Nearly continuous distributions of 

bottlenose dolphins complicate differentiation into geographically-based stocks.  NOAA 

Fisheries (NMFS) currently recognizes more than 30 putative stocks of bottlenose dolphins along 

the coast of the Gulf of Mexico (Waring et al. 1999), but most were established in the absence of 

appropriate empirical biological data, on the basis of geographical features alone.  Throughout 

this paper we define a ‘stock’ to be a demographically independent population, in accord with 

the definition used by NOAA Fisheries under the Marine Mammal Protection Act (Wade and 

Angliss, 1997; Taylor, 1997). 

Because very detailed long-term studies have not been conducted throughout the Gulf, 

there is considerable interest in using genetic methods to define stocks for bottlenose dolphins.  

However, most genetic analytical methods require the a priori definition of hypothesized 

management units.  This initial stratification can strongly influence results (Martien & Taylor, in 

press).  Here we present an analytical method, called Boundary Rank (BR), to generate 

hypothesized stocks using the genetic data.  Our method uses hierarchical clustering to cluster 

samples based on their genetic similarity, resulting in a set of nested stock structure hypotheses.  

To evaluate the feasibility of this approach for defining population stocks for bottlenose dolphins 

in the Gulf of Mexico, we applied it to an existing genetic dataset from Sarasota Bay and 
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surrounding waters (Sellas et al, in prep.).  This area has been extensively studied through long-

term observational, photo-identification, and genetic work (Duffield and Wells, 1986, 1991, 

2002; Scott et al., 1990; Wells, 1986, 1991, 2003; Sellas, 2002; Sellas et al., in prep.).  The 

movement patterns and population structure of dolphins in this area are well understood, making 

it an ideal study system for an empirical performance test of new analytical approaches.   

BR requires that genetic samples be grouped a priori into geographically small initial 

units, which serve as the smallest units used in the clustering.  However, when samples are 

continuously distributed, as is often the case for marine mammals, initial units must be defined 

subjectively and therefore may impact the performance of the method.  Expert knowledge of the 

behavior and fine-scale habitat preferences of the animals being studied can be very useful when 

defining initial units.  However, such knowledge is not available in most areas of the Gulf of 

Mexico, nor is it usually available for most species of conservation concern.  One of the goals of 

this study was to determine the importance of expert knowledge when defining initial units for a 

BR analysis of bottlenose dolphins in the Gulf of Mexico.  Therefore, we performed and 

compared two separate analyses, one of which incorporated information gathered during the 

long-term observational and photo-identification studies into the definition of initial units, and 

the other of which did not.   

Because BR results in a set of hypotheses, the additional step of estimating which 

putative stocks are demographically independent still needs to be taken.  We accomplish this by 

estimating dispersal rates using the program Migrate (Beerli & Felsenstein 2001).  We also 

compare the performance of BR to another clustering method available for continuously 

distributed species called SAMOVA (Dupanloup et al. 2002). 
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In addition to using the bottlenose dolphin genetic dataset as an empirical test of the 

performance of BR, we also performed extensive simulation performa nce testing of the method.  

We used the simulation model described in Taylor et al. (2000) to generate datasets for which we 

knew the true population structure.  We then analyzed the simulated datasets using BR and 

compared the population structure hypotheses suggested by the method to the ‘true’ structure.  

The performance analyses considered a number of different scenarios known to commonly occur 

with real data sets, including unequal population sizes, unequal dispersal rates and uneven 

sampling effort.  Details of the simulation performance tests can be found in the Supplement 

Information. 

 

METHODS 

Boundary Rank 

Boundary Rank (BR) is an agglomerative clustering analysis that coalesces units on the 

basis of their genetic similarity.  At each step in the clustering, we seek to merge the two units 

that are the most genetically similar and are therefore most likely to have come from the same 

biological population.  We considered several different statistics to measure genetic similarity 

between units.  We compared the performance (see Supplemental Information) using FST 

(Wright, 1932), φST (Excoffier et al. 1992) and χ2 per degree of freedom (χ2/dof).  All measure 

the degree of genetic differentiation between two samples.  φST takes into account the 

evolutionary relationship between haplotypes as well as their frequencies, while the other two 

only consider haplotype frequencies.  Performance was highest using χ2/dof as the measure of 

genetic differentiation (See Supplemental Information), so that is the measure we used for the 

remainder of our analyses. 



5 

In order to make comparisons based on haplotype frequencies, the user must first group 

samples into geographically small initial units.  Consequently, BR does require some a priori 

stratification of samples.  What distinguishes these initial units from the strata used in a 

traditional hypothesis-testing analysis is their geographic scale; the initial units used in a BR 

analysis will be smaller than the strata typically defined for a traditional hypothesis test.  With 

traditional hypothesis tests of population structure, the goal is to stratify the samples in a way 

that mimics the actual population structure as closely as possible.  The goal with BR, on the other 

hand, is to define initial units that can be combined into hypothesized populations by BR in the 

way that is most consistent with the genetic data.  The initial units should be as geographically 

small as is feasible to minimize the risk of defining an initial unit that spans a population 

boundary.  However, if the initial units are too small then they will not contain enough samples 

to allow for meaningful frequency-based comparisons.  In many cases, defining initial units will 

be easily accomplished by simply combining all samples taken from the same sampling site.  

However, when samples are not clustered geographically, the definition of initial units will be 

subjective and sensitivity analyses should be used to ensure that the results of the analysis are not 

heavily dependent on the choice of initial units. 

The main feature that distinguishes BR from other genetic clustering methods is that it 

allows the researcher to place geographic constraints on the clustering so that the clusters 

produced by the analysis are geographically contiguous.  Such a constraint is particularly 

valuable in ecological and applied studies where the goal is to investigate fine-scale population 

structure.  In such studies, the population units of interest typically exchange dispersers at a high 

enough rate to eliminate any phylogeographic signal, rendering unconstrained clustering 

methods ineffective.  Nonetheless, the dispersal rate is often still low enough that the population 
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units are demographically independent.  Similar geographically constrained clustering methods 

have been used in the past in other applied studies aimed at identifying management units. For 

instance, York et al. (1996) employed a geographically constrained clustering approach in their 

efforts to use trend data to identify management units for Steller sea lions. 

The program uses a connectivity matrix to indicate which sampling sites can be directly 

clustered with one another.  A one (‘1’) is used in the connectivity matrix to indicate that two 

sites can be clustered and a zero (‘0’) to indicate that they cannot.  The fact that two sampling 

sites are not considered ‘connected’ in the connectivity matrix does not imply that an individual 

could not move between those two sampling sites.  Rather, it simply indicates that those two 

sampling sites could not be placed in the same conservation unit without including other 

intervening sampling sites.  By allowing incorporation of information on the behavior and 

movement patterns of the species into the analysis, the connectivity matrix constrains the 

analysis so that the population structure hypotheses suggested by BR are plausible given what is 

already known about the biology of the species.  or non-migratory animals such as many coastal 

bottlenose dolphins, connectivity will likely be limited to geographically adjacent sites.  For 

migratory species, the researcher may wish to allow connections between non-adjacent sites.  

Such a connectivity matrix would allow for the possibility of, for instance, the intrusion of one 

breeding population into another along a migratory corridor or on the feeding ground.   

At the beginning of the analysis, each sampling site represents a hypothesized 

conservation unit.  The genetic differentiation (χ2/dof) is calculated between all connected pairs 

of hypothesized units, and the most genetically similar pair of connected units (i.e., those 

exhibiting the least genetic differentiation) is identified.  The boundary separating those two 

putative units is the lowest ranking boundary.  It is removed and the two putative units are 
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coalesced, thereby reducing the number of units by one.  The connectivity matrix is updated to 

reflect the geographic relationship of the new conglomerate unit and the genetic differentiation 

matrix is recalculated.  The program outputs the identity of the two units that have just been 

combined, as well as the genetic differentiation between them.  The process is then repeated, 

always removing the lowest ranking remaining putative boundary, until only a single boundary 

remains that divides the samples into two hypothesized units.  The result is a nested set of 

plausible population structures, each containing one fewer units than the previous.  This becomes 

the researcher’s set of hypotheses concerning population structure.  The method was extensively 

performance tested using simulations and found to perform well at suggesting population 

structure hypotheses that are consistent with the actual population structure of the samples 

(Supplemental Information). 

Application to Gulf of Mexico Bottlenose dolphins 

The data 

We applied BR to the genetic dataset presented in Sellas et al. (in prep.).  The dataset 

consisted of 450 bp of mitochondrial control region sequence from animals from Charlotte 

Harbor (n = 51), Sarasota Bay (n = 54), Tampa Bay (n = 46) and coastal waters of the Gulf of 

Mexico off west central Florida up to 9.3 km from shore (n = 56) (Figure 1).  Samples were 

collected by projectile biopsy darts or during surgical biopsy for health assessment (in Sarasota 

Bay, only; Sellas et al, in prep.; Wells et al. in press) and included many animals with sighting 

histories.  Sellas et al. (in prep.) found little genetic mixing between areas stratified using full 

behavioral data, which agrees with the long-term residency suggested by previous photographic 

identification studies in these areas – Sarasota Bay (Scott et al. 1990, Wells 1986, 1991, 2003), 

Charlotte Harbor (Wells et al. 1996a) and Pine Island Sound (Wells et al. 1997) combined, 
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Tampa Bay (Wells et al. 1996b), and the adjacent Gulf of Mexico waters (Fazioli and Wells 

1999), and previous genetic data (Duffield and Wells, 1986, 1991, 2002). 

Defining initial units 

We examine the impact of the definition of initial units by performing two separate 

analyses, the ‘naïve’ and ‘expert’ analyses.  For the naïve analysis, initial units (Figure 2a) were 

defined by a researcher (KKM) who had a general knowledge of dolphin behavior, but no 

specific knowledge of the individual sighting histories of the dolphins included in this study, nor 

of the fine-scale habitat differences across the study area.  The researcher did take into account 

gross habitat differences (i.e., inland versus coastal waters) and geographic features (e.g., 

peninsulas and islands that divide inland waters into discrete bays).  Initial units grouped samples 

collected in the same general habitat type (inland or coastal water) that were clustered together 

geographically (judged subjectively by eye; Figure 2a).   

Initial units used in the expert analysis (Figure 2b) were defined by an author (RSW) with 

extensive knowledge of the behavioral patterns of bottlenose dolphins in the study area, the 

microhabitats of Tampa Bay, Sarasota Bay and Charlotte Harbor, and the individual sighting 

histories of many of the individuals used in the study (Wells 1991, 2003; Wells et al. 1987).  

This background knowledge defined initial units more consistent with the behavior of the 

animals.  For instance, in the naïve analysis, animals that were known to live primarily in 

Sarasota Bay were placed in the same initial unit (Unit 7 in Figure 2a) as some animals that have 

been sighted primarily in Tampa Bay.  For the expert analysis, the known Sarasota and Tampa 

Bay animals were always placed in separate initial units.  The initial units within Tampa Bay 

were defined primarily on the basis of habitat differences for the expert analysis; the animals 

from Boca Ciega Bay (Unit 1 in Figure 2b), which is a very shallow, complex area of small 
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islands and channels, were placed in a separate unit from those sampled in the deeper, open 

waters around the mouth of Tampa Bay (Unit 2 in Figure 2b).  Similarly, the animals from the 

shallow habitat around the mouth of the Manatee River (Unit 3 in Figure 2b) were also placed in 

a separate unit from the deep-water samples.   

A genetic analysis of population structure may be misled by the inclusion of closely 

related animals in the dataset, particularly if the probability of sampling relatives differs across 

the study area.  BR may be particular vulnerable to the biases introduced by related individuals 

because the initial units are geographically small and, consequently, will often be comprised of 

relatively few samples.  The average relatedness for the bottlenose dolphin dataset did not differ 

significantly between the four populations (Sellas et al., in prep.).  However, the dataset did 

include several animals from Sarasota Bay that were known from long-term observational data to 

be mother-calf pairs.  The calves of these pairs were excluded from the dataset for the expert 

analysis but not for the naïve analysis, since the latter analysis reflects the results that could be 

obtained in any field study where long-term data were not available to define first order relatives.  

Including these mother-calf pairs in the naïve analysis allowed us to test for possible biases that 

could result from their inclusion. 

Connectivity matrices 

The connectivity matrix for both the naïve and expert analyses was drawn to reflect a 

pure stepping stone model; in other words, connections were drawn only between initial units 

that are geographically adjacent (Figures 2a and b).  This resulted in the definition of 

geographically contiguous units.  There was one exception to the assumption of a stepping stone 

model: in both analyses, a connection was allowed between the southern end of Sarasota Bay and 

the northern end of Charlotte Harbor.  This connection allows for the possibility that inshore, 
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estuarine populations are more closely related to each other than to intervening coastal 

populations.  Such a pattern could be the result of habitat selection by the dolphins and is 

plausible given what is known about population structure of other species and in other regions 

(Wells and Scott 1999).  In addition, there is a waterway connection between Sarasota Bay and 

Charlotte Harbor that would allow animals to move between these two areas without passing 

through the coastal population, and dolphins have been documented making this passage (Wells 

et al.1996a).   

Comparison to SAMOVA  

We compare the performance of BR for the bottlenose dolphin dataset to the genetic 

clustering method SAMOVA (Dupanloup et al. 2002).  Like BR, SAMOVA also incorporates a 

geographic constraint to ensure that the units defined by the method are geographically 

contiguous.  SAMOVA also requires grouping samples into initial units, but uses a different 

measure of genetic differentiation than BR and incorporates simulated annealing to reduce the 

probability of finding a local rather than a global maximum.  We ran SAMOVA using both the 

‘naïve’ and ‘expert’ initial unit definitions used in the BR analyses.  The geographic constraint 

used by SAMOVA is generated automatically.  We used 10,000 simulated annealing steps and 10 

different initial conditions.  We repeated each analysis three times to ensure that we were 

obtaining consistent results. 

Unlike BR, SAMOVA does not generated nested sets of hypothesized units.  Rather, the 

user specifies the number of groups the method should define.  If multiple hypotheses containing 

different numbers of units are desired, the analysis is run multiple times.  We used SAMOVA to 

generate population structures containing 3, 4 and 5 groups.  We then evaluated the performance 



11 

of the method by comparing the resulting structures to the observational and photo-identification 

studies. 

Dispersal rate estimation 

We estimate dispersal rates between several of the hypothesized units suggested by BR 

using Migrate (Beerli and Felsenstein, 2001).  We first ran Migrate using the program default 

settings.  The estimates of dispersal rate and ? resulting from this preliminary analysis were then 

used as the initial estimates in the final analysis.  The final analysis again used the default search 

parameters, except that we used the ‘randomtree = yes’ option and replicated the analysis over 

three runs. 

RESULTS 

Boundary Rank analyses 

BR analyses results (Figure 3) appear as bifurcating dendrograms with initial units at the 

tips.  Nodes represent the coalescence of a pair of units with the genetic differentiation (?2/dof) 

between the two units being coalesced shown above each node.  Both naïve and expert analyses 

indicate that inland populations are more closely related to each other than they are to the 

animals from the Gulf of Mexico.  Furthermore, in both analyses Sarasota Bay grouped with 

Charlotte Harbor before it did with Tampa Bay, suggesting greater gene flow between Sarasota 

Bay and Charlotte Harbor than between Sarasota Bay and Tampa Bay, despite the greater 

distance separating the former two bodies of water.  These results match recent analyses of 

mtDNA and microsatellite data using an AMOVA approach and the same samples (Sellas et al. 

in prep.).   

We used the program Migrate to estimate dispersal rates between Tampa Bay, Sarasota 

Bay, Charlotte Harbor and the Gulf of Mexico, as delineated by the BR analyses.  The 
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delineation of the Sarasota Bay and Tampa Bay populations differed between the expert and 

naïve analyses, as shown in Figure 4.  The dispersal rates between the inland water populations 

were all low, ranging from 2.2 to 7.7 dispersers per generation for the naïve analysis (Table 2) 

and from 0 to 8.4 in the expert analysis (Table 3).  Dispersal estimates between the inland water 

populations and the Gulf population were also low for both analyses. 

In the expert analysis, the Tampa Bay samples did not all group together; rather, the few 

samples from Boca Ciega Bay (Unit 1 in Figure 2b) remained separate from the samples from 

the rest of Tampa Bay until very late in the analysis.  We therefore attempted to include Boca 

Ciega Bay as a separate stratum when estimating dispersal rates for the expert analysis, though 

the sample size from this area was low (n = 6).  However, Migrate was unable to produce 

meaningful estimates of gene flow into or out of Boca Ciega Bay, with the 95% profile 

likelihood intervals ranging from zero to the implausibly high 108.  Therefore, we excluded Boca 

Ciega Bay from the dispersal rate estimates.   

SAMOVA analyses 

The groupings suggested by SAMOVA were not consistent with the photo-identification 

and observational data (Figure 5).  When the naïve initial units were used in the analysis, the 

samples from Sarasota Bay were all clustered into a distinct unit, but the remaining clusters did 

not correspond with actual populations.  None of the clusters defined by the expert SAMOVA 

analysis corresponded with the observational data.  Furthermore, SAMOVA was far more 

sensitive to the definition of initial units than was BR, as evinced by the fact that the SAMOVA 

results differed markedly depending on whether the naïve or expert initial units were used.  

When the expert initial units were used, the samples from Boca Ciega Bay remained distinct 

from the rest of Tampa Bay, as they did in the expert BR analysis.   
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DISCUSSION 

 

The congruence between the results of the BR analyses and the pattern of population 

structure suggested by the observational data (Wells 1986, 1991, 2003; Scott et al. 1990, Wells 

and Scott 1990, Wells et al. 1996a, 1996b, 1997, Urian 2002) and previous genetic analyses ( 

Duffield and Wells 1986, 1991, 2002; Sellas et al., in prep.) indicate that BR is likely to prove a 

reliable tool for evaluating population structure for bottlenose dolphins in areas from which long-

term observational and photo-identification data are not available. Differences between the units 

suggested by the naïve and expert analyses were mostly minor.  Exact locations of the unit the 

Tampa Bay/Gulf of Mexico boundary and the Tampa Bay/Sarasota Bay boundary differed 

(Figure 5).  The definition of initial units precluded identical placement in these cases.  The 

magnitude and impact of boundary placement error depends on resulting biases in abundance 

estimation for the putative stocks.  The Tampa Bay/Sarasota Bay boundary discrepancy is so 

small that abundance estimates error would be trivial.  The Tampa Bay/Gulf of Mexico boundary 

differs more substantially between the analyses and warrants further investigation to actually 

estimate the magnitude of the error.   

Of greater concern is the treatment of Boca Ciega Bay (Unit 1 from Figure 2), which was 

clustered with Tampa Bay in the naïve analysis, but remained distinct from the rest of Tampa 

Bay until very late in the clustering in the expert analysis.  In fact, the expert analysis indicates 

that samples from Tampa Bay are more genetically distinct from Boca Ciega Bay than they are 

from Sarasota Bay and Charlotte Harbor (Figure 3).  Figure 2 shows that in the naïve analysis, 

the six samples from Boca Ciega Bay were included in an initial unit containing eight samples 

from the deep-water portion of Tampa Bay.  Thus, any genetic differentiation between Boca 
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Ciega Bay and the rest of Tampa Bay would have been obscured in the naïve analysis due to the 

configuration of the initial units. 

The alleged strong differentiation between Boca Ciega Bay and Tampa Bay suggested by 

the expert analysis must be regarded with caution, however.  The sample size from Boca Ciega 

Bay (n = 6) was the smallest of any of the initial units considered in either analysis (Table 1).  

Small sample size results in greatly increased uncertainty in the estimates of haplotype 

frequency.  Thus, the fact that Boca Ciega Bay remained distinct from the rest of Tampa Bay 

until late in the expert analysis may simply be an artifact of its small sample size.  Nevertheless, 

these results have prompted efforts to collect additional genetic samples in Tampa Bay, including 

Boca Ciega Bay, to further investigate the possibility of further population structure within 

Tampa Bay as suggested by the expert analysis in this paper and also by the behavioral work of 

Urian (2002). 

Unlike BR, SAMOVA did not cluster the genetic samples into units consistent with 

observational data (Figure 6).   Although SAMOVA has an apparent advantage over BR by using 

simulated annealing to avoid becoming trapped at a local minimum, BR uses as its measure of 

genetic differentiation a statistic that is more powerful for detecting population-level differences 

from mtDNA data (Hudson et al. 1992).  This likely accounts for BR’s superior performance in 

correctly detecting population structure in the bottlenose dolphin dataset.  In fact, the 

differentiation measure used by SAMOVA, F ct, compares the proportion of variation among 

geographic regions to that between populations within the same region.  Thus, SAMOVA is 

designed not for identifying populations, as it was used here, but rather for investigating the 

hierarchical relationships among populations.  Consequently, the fact that it did not perform as 

well as BR in this application is likely a reflection of the fact that BR was specifically designed 
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for this type of problem while SAMOVA was not.  SAMOVA may well outperform BR in 

addressing problems more comparable to that for which SAMOVA was designed.   

The estimates of gene flow between Tampa Bay, Sarasota Bay, Charlotte Harbor and the 

coastal Gulf of Mexico were all demographically trivial, thus requiring that these areas be 

managed as separate management units.  The reproductive lifespan of female bottlenose dolphins 

in Sarasota Bay is about 40 years (Wells and Scott 1999), with a generation of about 25-28 years, 

meaning that the per-generation movement rates in Tables 2 and 3 would all translate to less than 

a single animal dispersing per year.  While such rates are sufficient to prevent the populations 

from maintaining independent evolutionary trajectories, they are so low as to have no meaningful 

impact on the demography of the populations.  Thus, if one of these populations suffered a large 

natural or human-caused mortality event, the population would likely not be replenished by 

immigration from neighboring areas for several decades.   
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LIST OF FIGURES 

Figure 1.  Genetic samples were collected from dolphins from Tampa Bay (n=46; red), Sarasota 

Bay (n=54; yellow), Charlotte Harbor (n=51; green) and nearby coastal Gulf of Mexico waters 

(n=56; blue) (Sellas et al., in prep.).   

Figure 2a&b.  The initial units used in the (a) naïve and (b) expert analyses.  Connectivity is 

indicated by the red lines.   

Figure 3.  Bifurcating dendrograms depicting the results of the Boundary Rank analyses using 

the (a) naïve and (b) expert initial unit definitions.  The initial units are at the tips of the 

dendrograms.  The nodes represent the coalescence of a pair of units, while the number 

associated with each node indicates the genetic distance (?2/dof) between the two units being 

coalesced.  The depth of a node within the dendrogram indicates how late in the analysis the two 

units connected to that node coalesced.  For instance, in the naïve analysis, the first pair of units 

to combine was two initial units from Sarasota Bay, numbers 7 and 9.  Next units 8 and 11, both 

from the Gulf of Mexico, coalesced.  The number of units remaining at any level in the 

dendrogram is indicated along the right edge of the figure. 

Figure 4.  The putative populations between which dispersal was estimated using the program 

Migrate.  For the (a) naïve analysis, all Tampa Bay samples were treated as a single population, 

while for the (b) expert analysis Boca Ciega Bay was treated separately from the rest of Tampa 

Bay.   

Figure 5.  Results of the SAMOVA analyses of the bottlenose dolphin dataset.  SAMOVA was 

used to group the samples into 3, 4 or 5 units using both the ‘naïve’ and ‘expert’ initial units. 
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Table 1.  Sample sizes used for the (a) naïve and (b) expert analyses. 
 
  

Initial Unit Sample Size  
a) Naïve analysis   

1 14  
2 9  
3 9  
4 17  
5 7  
6 14  
7 20  
8 18  
9 17  
10 12  
11 19  
12 22  
13 29  
14 33  

 
b) Expert analysis 

  

1 6  
2 37  
3 9  
4 22  
5 13  
6 20  
7 11  
8 8  
9 13  
10 13  
11 38  
12 30  
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Table 2.  Pairwise estimates from Migrate of gene flow between the three inland-water strata and 
the coastal Gulf of Mexico as defined by the ‘naïve’ BR analysis.  All estimates are expressed in 
terms of the number of effective female dispersers per generation, with the 95% profile 
likelihood interval given in parentheses.  Note that rates of gene flow are not symmetric.  TB = 
Tampa Bay, SB = Sarasota Bay, CH = Charlotte Harbor and GM = Gulf of Mexico. 
 

 Source 
population 

   

Target population TB SB CH GM 
TB -- 4.6 

(2.5-7.6) 
4.6 

(2.5-7.6) 
6.4 

(3.9-9.8) 
SB 6.7 

(3.7-11.0) 
-- 7.2 

(3.1-11.7) 
4.1 

(1.9-7.7) 
CH 7.7 

(4.9-11.5) 
2.2 

(0.9-4.5) 
-- 2.6 

(1.1-5.0) 
GM 8.4 

(5.3-12.6) 
2.8 

(1.2-5.4) 
5.2 

(2.9-8.6) 
-- 

 
 
 
Table 3.  Pairwise estimates from Migrate of gene flow between the three inland-water strata and 
the coastal Gulf of Mexico defined by the ‘expert’ BR analysis.  All estimates are expressed in 
terms of the number of effective female dispersers per generation, with the 95% profile 
likelihood interval given in parentheses.  Note that rates of gene flow are not symmetric.  TB = 
Tampa Bay, SB = Sarasota Bay, CH = Charlotte Harbor and GM=Gulf of Mexico. 
 

 Source population 
Target population TB SB CH GM 

TB -- 1.6 
(0.8-2.9) 

8.8 
(6.5-11.4) 

4.0 
(2.6-5.9) 

SB 0.6 
(0.2-1.4) 

-- 2.4 
(1.5-3.6) 

0 
(0-0) 

CH 7.9 
(6.0-10.1) 

1.2 
(0.6-2.1) 

-- 0.7 
(0.2-1.5) 

GM 4.8 
(2.8-7.5) 

1.9 
(0.7-3.9) 

6.9 
(4.3-10.3) 

-- 
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Supplemental Information 

SIMULATION PERFORMANCE TESTING OF BOUNDARY RANK 

Performance testing framework 

We used data generated by the simulation model described in Taylor et al. (2000) to 

conduct a systematic evaluation of the performance of Boundary Rank (BR).  We used the 

simulation model to generate datasets for which we knew the true population structure.  We drew 

samples from each of the model populations, divided those samples into discrete sampling sites, 

and then analyzed the resulting samples using the Boundary Rank method.  All of our 

simulations consisted of five populations arranged as a linear stepping-stone, with dispersal 

occurring only between adjacent populations.  We used a connectivity matrix in which each 

sampling site was ‘connected’ only to its two adjacent neighbors.  We evaluated the performance 

by comparing the locations of the four highest-ranking boundaries from the analysis to the 

locations of the four actual population boundaries between the five model populations.  Thus, our 

performance measures examine only the ranking of the boundaries, not the likelihood of the 

researcher choosing the correct number of boundaries to include.   

The Simulation Model 

The model used to generate the data for evaluating the performance of BR is described in Taylor 

et al. (2000).  It is a density-dependent birth-death model that simulates the evolution of 

mitochondrial DNA.  We simulated 40 variable basepairs of mitochondrial sequence and used 

birth and death rates that resulted in a generation time of approxima tely four years.  The 

mutation parameter was set at 0.0001 per basepair per generation.  This value was chosen to 

produce haplotype distributions that match those we observe for northern right whale dolphins 

(Lissodelphis borealis), a species for which we have a large amount of sequence data. 
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For each simulation, all five populations were initialized at carrying capacity with a 

single haplotype and allowed to evolve for 200,000 years.  After 150,000 years, stochastic 

equilibrium was reached.  The haplotype profile (the sequence of each haplotype and its 

frequency in all five populations) was recorded every 500 years between years 150,000 and 

200,000 of the simulation, providing 100 haplotype profiles for each combination of dispersal 

rates and carrying capacities.  After a haplotype profile had been generated, samples were drawn 

from each of the five populations and divided into multiple sampling sites.  This sampling was 

repeated five times for each of the 100 haplotype profiles, resulting in 500 independent sampling 

events for each combination of dispersal rate and carrying capacity.  For each sampling event, 

Boundary Rank was used to rank all putative boundaries.  The locations of the four highest-

ranking boundaries were then compared to the locations of the four actual population boundaries. 

Measuring Performance 

We measured the performance of the method in two ways.  First, we determined the 

probability that the four highest-ranking boundaries from the analysis exactly correspond to the 

actual population boundaries.  We call this the “exact placement measure.”  The goal of most 

attempts to define conservation units, however, is not to get the unit boundaries exactly right, but 

rather to meet some predefined management objective.  We therefore decided to use a second 

measure of performance to determine how well our method would perform under a specific real-

world management scheme.  We call this the “management scheme measure.”  We chose the 

management scheme applied to management units for marine mammals in the United States 

under the Marine Mammal Protection Act (MMPA).  One of the objectives of the MMPA is that 

a species must remain extant throughout its entire range with no local extirpations (Taylor, 

1997).  Human-caused mortality (either direct harvest or incidental mortality) is allowed for 
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marine mammal species so long as it does not exceed the allowable kill (Taylor, 1997).  The 

calculation of allowable kill uses the estimated abundance of each management unit and is 

therefore vulnerable to errors when units are improperly defined.   

The consequences of over-estimating the size of the exploited population will depend on 

the spatial distribution of human impact.  The more evenly distributed the impact is across a 

management unit, the less severe the consequences of defining management units that are larger 

than the actual populations (Taylor and Dizon, 1999).  We therefore developed a stringent test 

where human-caused mortality was assumed to be maximally concentrated to a single point 

location (e.g., by-catch in a highly concentrated fishery).   

The four highest-ranking boundaries from the BR analysis divided the samples into five 

hypothesized management units.  To simulate the consequences of managing on the basis of 

these five units we used a deterministic model of five populations exhibiting logistic growth.  

Dispersal occurred between adjacent populations at rate d, and harvest was removed only from 

the focal sampling site.  We assumed that harvest occurred at the maximum rate allowed under 

the Potential Biological Removal (PBR; Taylor, 1997) scheme, which is the management 

procedure used to regulate human-caused mortality under the MMPA.  The abundance estimate 

that we used to calculate the allowable harvest was the abundance of the management unit 

containing the focal sampling site.  Thus, if the management unit were larger than the actual 

population then the abundance would be overestimated.  If this overestimate were substantial, the 

harvested population would be driven to extinction.   

We ran the deterministic model for 10,000 years (by which time the populations had 

reach equilibrium abundance) to see whether the management unit boundaries suggested by BR 

were sufficiently close to the true population boundaries to prevent the extirpation of the 
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harvested population.  We repeated this process for each sampling site and recorded whether or 

not harvest from each sampling site would result in extinction.  We calculated performance for 

each population by averaging the results for all of the sampling sites contained within a 

population.  In the example (Fig. S1), the performance for populations 1, 2 and 3 is 1.0, since 

harvesting from any of the sampling sites within those populations would not cause a local 

extinction.  Performance for population 5 is 0.5, since two of the four sampling sites from 

population 5 are contained in a management unit that is 50% too large and is therefore not 

sufficient to prevent the over-exploitation and eventual extinction of the harvested population.  

Similarly, since it is entirely within a management unit too large to adequately protect it, 

performance for population 4 is zero.  The overall performance, averaged across populations, is 

0.7. 

By examining the impact of harvest at every sampling site and averaging the results, our 

performance measure takes account of the uncertainty in the sampling location.  This 

performance measure is also conservative since we assume that not only is the human-caused 

mortality concentrated at a single location but also that harvest occurs at its maximum allowable 

rate.   

Equal abundance and dispersal rate and even sampling 

We first tested performance assuming that each of the five model populations had the 

same abundance and that the dispersal rate was equal between all pairs of adjacent populations.  

The expected level of genetic differentiation between two populations is given by the formula 

       
12

1
+

=
NdT

FST                                                  (1) 

where N is the effective abundance of the populations (for mitochondrial data, roughly equal to 

the number of adult females), d is the annual dispersal rate and T is the generation time (Wright, 
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1932; Latter, 1973; Takahata and Palumbi, 1985).  We express gene flow in terms of an annual 

dispersal rate rather than the more familiar migrants-per-generation (Nm) because the annual 

dispersal rate is the measure relevant to management.  As discussed by Taylor (1997) and Taylor 

and Dizon (1999), dispersal rate is the critical parameter in determining whether two areas can be 

safely managed as a single unit.  To determine the impact of the degree of genetic differentiation 

on the performance of Boundary Rank, we examined abundances of 100, 300, and 1,000 

effective adult females and dispersal rates ranging from 0 to 0.01 per year.  We also examined 

performance as a function of the total number of samples (120, 180 or 240) and the total number 

of sampling sites (10, 15 or 20).   

The performance of the method, as measured by both the exact placement and 

management scheme measures, was consistently highest when we used either ?2/dof as our 

measure of genetic similarity rather than FST or φST (Fig. S2).  This result is consistent with 

published studies that have shown that ?2 is the most powerful statistic for detecting population 

structure using mtDNA data (Hudson et al., 1992).  The superior performance of the ?2-based 

measure was consistent across all of the abundances, dispersal rates, and sample distributions we 

examined.  All results presented in the remainder of this paper were obtained using ?2/dof as the 

similarity measure. 

Performance using the exact placement measure was high when dispersal rates were low, 

but declined with increasing dispersal rate (Fig. S3a-c).  Performance decreased substantially 

with fewer samples (Fig. S3a) and with more sampling sites (Fig. S3b), both of which result in 

fewer samples per sampling site.  Performance also decreased with increasing abundance, though 

the difference in performance between abundances of 300 and 1,000 was much greater than the 

decrease between 100 and 300 (Fig. S3c). 
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Boundary Rank performed much better when evaluated using the management scheme 

measure, which strives to keep all local populations extant even in a worst case where all of the 

human-caused mortality is concentrated at a single point.  Performance decreased slightly with 

increasing annual dispersal rate up to a rate of between 0.006 and 0.008, after which it increased 

slightly (Fig. S3d-f).  Overall, however, the decrease in performance with increasing dispersal 

was much less pronounced than with the exact placement measure (comparing the figures on the 

left to their equivalents on the right in Fig. S3).  Decreasing the number of samples resulted in a 

slight decrease in performance (Fig. S3d), as did increasing the number of sampling sites (Fig. 

S3e).  As expected, an increase in the abundance of the populations caused performance to 

decrease more rapidly with increasing dispersal rate (Fig. S3f) due to the inverse relationship 

between abundance and genetic differentiation (eq. 1).  However, none of these changes had a 

dramatic impact on performance.   

The difference in performance between the two measures is due to differences in the way 

that errors in boundary placement are weighted.  The exact placement measure (getting 

boundaries exactly right) weights all errors in boundary placement equally and consequently 

ignores the magnitude of the error.  However, when actually defining units of conservation, some 

errors in unit definition will be more serious than others.  A small error, one in which a boundary 

is placed very near to an actual population boundary, is likely to have little effect on the outcome 

of management decisions.  Large errors in boundary placement, on the other hand, could result in 

serious management errors.  The management scheme measure takes into account the severity of 

boundary placement errors.  As long as an error in boundary placement is small enough to meet 

management objectives, the error does not translate into reduced performance under the second 

measure.  Thus, the disparity between the two measures at high dispersal rates indicates that 
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while boundaries placed by the analysis do not always exactly correspond to actual population 

boundaries, they are usually very close.  Because the management scheme measure is more 

relevant to performance in a management context, we focus on this measure in subsequent 

performance testing. 

The increase in performance using the management scheme measure when the annual 

dispersal rate increased from 0.008 to 0.01 is due to the nature of the management scheme we 

chose and its management objectives.  Because the goal is simply to prevent the extinction of 

local populations, the cost of making an error in boundary placement goes down as dispersal rate 

increases.  This is because, when the dispersal rate between two populations is high, over-

exploitation in one population can be made up for by dispersal from the other population and 

larger errors in boundary placement can be accommodated without resulting in decreased 

performance.  Thus, while the accuracy of boundary placement decreases with increasing 

dispersal rate, as evinced by the exact placement measure, the decrease in accuracy is partially 

mitigated by a concomitant decrease in the cost of boundary placement errors.  In this case, once 

the annual dispersal rate gets over approximately 0.008, the decrease in cost outweighs the 

decrease in accuracy, and performance actually increases. 

Unequal abundance and dispersal 

In reality, natural populations are not all the same size, nor do they share dispersers at an 

equal rate.  We therefore looked at the effect of unequal abundance and dispersal rate on 

performance using the abundances and dispersal rates shown in Figure S4.  Initially we tested 

performance for the populations shown in Figure S4 assuming that sampling effort was evenly 

distributed across the range.  For this analysis we drew a total of 250 samples and divided them 

among 25 sampling sites (10 samples per site).  The number of sampling sites from each 
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population was proportional to the effective abundance of the population (Table S1).  We found 

that the probability that the units defined by the four highest-ranking boundaries would 

adequately protect populations 2 through 5 ranged from 0.766 to 0.998 (Table S1).  However, 

performance for population 1 was only 0.384, meaning that it would be protected from over-

exploitation only 38.4% of the time if it were harvested under the PBR management scheme.  

This is because population 1 is a small population (N = 100) situated next to a population ten 

times larger with which it exchanges dispersers at a rate of 0.005 per year.  Thus, while 

population 1 only exports an average of 0.5 (100 x 0.005) dispersers per year, it receives 5 (1,000 

x 0.005) dispersers per year from population 2.  Consequently, genetic drift within population 1 

is swamped by immigration from population 2, preventing any detectable genetic differentiation 

from developing.  Thus, neither Boundary Rank nor any other genetic approach will have much 

success in distinguishing populations 1 and 2.   

Fortunately, the high rate of immigration into population 1 means that the consequences 

of failing to detect the boundary that defines it are less severe than if the population received 

fewer migrants.  Because gene flow is so high into this small population, no local adaptation 

would be expected without strong selection.  Thus, the extirpation of population 1 would result 

in little if any loss of genetic diversity. Furthermore, if the exploitation of population 1 were 

halted after the population had been extirpated, individuals from population 2 would quickly 

recolonize the region.  Thus, the severity of the error in underestimating population structure in 

this area is less than if the boundary represented low gene flow and may be an acceptable 

temporary loss depending on other factors, such as whether the population was of cultural or 

economic importance (such as use for ecotourism). 
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In contrast, although loss of the other small, isolated population (population 5) is less 

likely (protected 76.6% of the time compared to 38.4% of the time for population 1), the 

consequences are more severe because gene flow is sufficiently low that local adaptation is 

plausible and recolonization would be very slow.  This example emphasizes that even when 

dispersal is very low (only two dispersers per generation move from population 4 to population 

5) and a relatively large proportion (10%) of the populations is sampled, it is still extremely 

difficult to detect a small population situated next to a much larger one. 

Uneven sampling 

Because we wanted a realistic assessment of how our method would perform when faced 

with real-world data, we also tested performance using two different examples of unevenly 

distributed samples: (1) the “concentrated” distribution had a high density of sampling sites near 

the center of the range and low density near the edges (Fig. S5a) and (2) the “gappy” distribution 

had high sample site densities near the edges and a low density sampling gap near the center 

(Fig. S5b).  We first tested performance with each of these uneven sampling distributions when 

all five model populations had the same abundance (N = 1,000) and exchanged dispersers with 

their neighbors at an equal rate (d = 0.004).  This constituted a rigorous test, as that combination 

of abundance and dispersal resulted in one of the lowest estimates of performance when 

sampling sites are evenly distributed (Table S1).  Second, we tested performance using each of 

the two uneven sampling distributions (concentrated and gappy) and the abundances and 

dispersal rates shown in Figure 4.  This is our most rigorous test of performance, since it includes 

unequal abundance and dispersal rates and uneven sample distribution.   

For both equal (Table S1) and unequal (Table S2) population abundances and dispersal 

rates, performance was largely a function of the number of sampling sites (and therefore, 
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samples) per population.  When the number of sampling sites from a population was three or 

greater, performance was generally over 0.75.  When the number of sampling sites was less than 

three, performance was generally less than 0.6.  This result illustrates the importance of careful 

sample collection in an investigation of population structure.  When samples are unevenly 

distributed across the study area, as they often are, it is unlikely that population structure will be 

detected in areas where the sampling is poorest.  Consequently, sampling efforts should be 

concentrated in areas where human impact poses the greatest threat to a species. 

Summary 

While the probability of placing boundaries in exactly the right location, as measured by 

the exact placement performance measure, decreases substantially with increasing dispersal rate, 

the management scheme performance measure shows that the four highest-ranking boundaries 

from the analysis are usually close enough to the actual population boundaries to adequately 

protect against over-exploitation due to errors in unit definition.   

It is worth noting that all of the simulated datasets used in the performance testing were 

designed to have haplotypic diversities comparable to those found in northern right whale 

dolphins (Lissodelphis borealis).  However, haplotypic diversities vary widely among species of 

cetaceans, from very low levels in sperm whales (Physeter macrocephalus; Lyrholm et al., 1996) 

to very high levels in species such as Dall’s porpoise (Phocoenoides dalli; Escorza-Trevino and 

Dizon, 2000).  Because the Boundary Rank method relies on haplotypic frequency data in 

calculating the genetic distance between units, the sample size necessary to achieve a given level 

of performance will increase as haplotypic diversity increases.  Thus, when evaluating the 

adequacy of a given sample for use in Boundary Rank or any other analysis program 

consideration must be given to not only the number of samples but also the sample size relative 
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to haplotypic diversity.  For instance, while 20 samples per sampling site may be judged 

sufficient if only five to ten haplotypes are detected at each sampling site, such a sample size will 

not yield sufficiently accurate frequency information if most sampling sites contain 15 to 20 

haplotypes, most of which are represented by a single individual.  
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FIGURE LEGENDS 
 

Figure S1.  Schematic of the procedure used to estimate performance under the 
management scheme measure.  In the sample shown, 30% of the range is contained in a 
management unit that is too large to prevent over-exploitation, so the performance is 0.7. 
 
Figure S2.  Performance of Boundary Rank as a function of dispersal rate using different 
measures of genetic similarity.  The results shown were generated by drawing a total of 
240 samples from the 5 model populations and dividing the samples among ten sampling 
sites.  The abundance of each of the five model populations was 300 effective adult 
females.  Performance was measured using both the a) exact placement and b) 
management scheme measures. 
 
Figure S3.  Performance of the analysis as a function of dispersal rate with equal 
abundances and dispersal rates and an even sample distribution.  Panels a through c show 
the results using the “exact placement” measure of performance and panels d through f 
show the results for the “management scheme” measure of performance.  We started with a 
total of 240 samples divided among ten sampling sites and the abundance of each of the 
five populations equal to 300 effective adult females.  We then independently varied the 
total number of samples (a and d), the number of sampling sites (b and e), and the effective 
abundance of the populations (c and f). 
 
Figure S4.  Effective abundances and dispersal rates used when testing the performance of 
the method in the face of unequal abundance and dispersal rates.   

 
Figure S5.  Two examples of unevenly distributed sampling sites: a) a “concentrated” 
sampling distribution, where most sampling sites are concentrated near the center of the 
range, and b) a “gappy” sampling distribution, where most sampling sites are near the 
edges of the range with low sampling site density near the center.  Both distributions 
consisted of 20 sampling sites with 12 samples per site, for a total of 240 samples.   
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Table S1.  Performance of the ranking method, using the management scheme measure, as a function of 
sample distribution when all populations have an abundance of 1,000 and exchange dispersers at a rate of 
0.004 per year.  The results shown are based on 20 sampling sites, each comprised of 12 samples.  For each 
sampling scheme we list the performance as measured by the management scheme measure, the number of 
sampling sites from each population and the percentage of the total abundance of each population that was 
sampled. 

 Population (Ne) Sample 
Distribution  1 

(1,000) 
2 

(1,000) 
3 

(1,000) 
4 

(1,000) 
5 

(1,000) 

 
Average 

Even Performance 
# of sites 

0.842 
4 

0.741 
4 

0.734 
4 

0.776 
4 

0.850 
4 

0.788 
 

 Proportion sampled 0.048 0.048 0.048 0.048 0.048  
Concentrated Performance 

# of sites 
0.929 

3 
0.965 

9 
0.845 

5 
0.402 

2 
0.360 

1 
0.700 

 
 Proportion sampled 0.036 0.108 0.06 0.024 0.012  
Gappy Performance 

# of sites 
0.842 

8 
0.478 

2 
0.318 

1 
0.632 

3 
0.896 

6 
0.633 

 
 Proportion sampled 0.096 0.024 0.012 0.036 0.072  
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Table S2. Performance of the ranking method, using the management scheme measure, as a function of 
sample distribution when population sizes and dispersal rates are unequal.  For the even sample distribution, 
there were 25 sampling sites, each containing 10 samples.  For the concentrated and gappy distributions, there 
were 20 sampling sites of 12 samples each.  For each sampling scheme we list the performance as measured 
by the management scheme measure, the number of sampling sites from each population and the proportion 
of the total abundance of each population that was sampled. 

Population (Ne) Sample Distribution  

1 
(100) 

2 
(1,000) 

3 
(300) 

4 
(1,000) 

5 
(100) 

 
Average 

Even Performance 
# of sites 

0.384 
1 

0.998 
10 

0.805 
3 

0.884 
10 

0.766 
1 

0.767 
 

 Proportion sampled 0.1 0.1 0.1 0.1 0.1  
Concentrated Performance 

# of sites 
0.496 

1 
1.0 
10 

0.756 
3 

0.824 
5 

0.830 
1 

0.781 
 

 Proportion sampled 0.1 0.1 0.1 0.05 0.1  
Gappy Performance 

# of sites 
0.56 

2 
0.998 

8 
0.528 

1 
0.652 

6 
0.947 

3 
0.737 

 
 Proportion sampled 0.2 0.08 0.03 0.06 0.33  
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Figure S5. 
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b) Gappy 




